Sum and Difference Identities (Part 1)

These notes are intended as a companion to section 7.5 (p. $635-640$) in your workbook. You should also read the section for more complete explanations and additional examples.

Sum and Difference Identities

Verify that the following statements are true:
a) $\sin \left(30^{\circ}+60^{\circ}\right)=\sin 30^{\circ} \cdot \cos 60^{\circ}+\cos 30^{\circ} \cdot \sin 60^{\circ}$
b) $\cos \left(30^{\circ}+60^{\circ}\right)=\cos 30^{\circ} \cdot \cos 60^{\circ}-\sin 30^{\circ} \cdot \sin 60^{\circ}$

These statements can be generalized to form what are called the sum and difference identities.

$$
\begin{array}{ll}
\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta
\end{array}
$$

There are also sum and difference identities for the tangent ratio:

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta} \quad \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}
$$

Example 2 (sidebar p. 638)

Write each expression in simplest form, then evaluate where possible.
a) $\sin 8 x \cdot \cos 3 x-\cos 8 x \cdot \sin 3 x$
b) $\frac{\tan \frac{\pi}{6}+\tan \frac{\pi}{12}}{1-\tan \frac{\pi}{6} \cdot \tan \frac{\pi}{12}}$

Example 3 (sidebar p. 639)
Prove this identity:

$$
\sin (\pi-x)=\sin x
$$

Example 4 (sidebar p. 640)

Solve the equation $\cos 4 x \cdot \cos x+\sin 4 x \cdot \sin x=1$ over the domain $0 \leq x<2 \pi$.

Homework: \#4, 5, 9, 10ii, 11, 14, 15, 17 in the exercises (p. $641-649$). Answers on p. 650.

